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ABSTRACT: Recent experiments report observations of quantum
interference between plasmon resonances, inviting descriptions of
plasmon−photon interaction using methods from quantum optics.
Here we demonstrate, using a Heisenberg−Langevin approach, that the
radiation emitted from the localized surface plasmon resonances of a
mixed-metal heterodimer may exhibit observable, beat frequency
interferences at a far-field detector, known as quantum beats. This
prediction represents a correspondence between V-type atoms of
quantum optics and the familiar heterodimer system of plasmonics. We
explore this analogy in depth and find that although both systems support
quantum beats, the heterodimer emits photons in bunches due to the bosonic nature of the plasmon. This highlights a significant
difference between the properties of atomic and plasmonic systems.
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The observation of Hong−Ou−Mandel (HOM) interfer-
ence from propagating surface plasmons has established

the close relationship between free-field photons and metal-
confined surface plasmon polaritons.1−4 In the original version
of this experiment, single-photon interference at a 50−50 beam
splitter induces fourth-order interference effects predicted by
quantum electrodynamics.5 The plasmonic HOM experiment
reproduces this effect in the situation where interfering surface
plasmons replace the beam splitter, opening the door for study
of further parallels between plasmonics and quantum optics.
Studies of the fundamental quantum-mechanical properties of
plasma oscillations in conductors have allowed researchers to
take advantage of the near-field properties of plasmonic
structures in new ways. More specifically, recent experiments
involving emission from quantum dots6−8 or nitrogen-vacancy
centers9−12 coupled to metallic wave guides have shown the
potential for plasmonic structures to be used as single-photon
sources in quantum information science applications. More-
over, the plasmonic HOM experiment shows that quantum
coherences are retained in photon−plasmon−photon con-
version processes despite the significant dispersion and
dephasing inherent to plasmonic systems.1,2 The possibility of
customizable, room-temperature quantum systems is significant
for a variety of quantum information and computing
applications, making quantum plasmonics an exciting and
growing new field.13,14

The study of quantum interference between plasmons
confined to the surfaces of metal nanoparticles has also
generated significant recent research interest.14−18 The optical
properties of such localized surface plasmon resonances
(LSPRs) have a rich dependence on particle morphology,
material composition, and aggregation scheme, making LSPR
systems highly tunable. In addition, aggregates of nanoparticles
may support near-field regions of high electric field strength, so-

called electromagnetic hot spots, which facilitate the manipu-
lation of optical-frequency radiation at subdiffraction-limited
length scales.19−25 These features of LSPRs make them ideal
candidates for a variety of applications requiring a high degree
of optical control, and understanding their fundamental
quantum-mechanical properties remains an important open
question.
In this paper we study the radiation emitted from a simple

LSPR system: two equal-sized silver and gold spheres in close
proximity, supporting spectrally distinguishable dipole plasmon
responses. Using a Heisenberg−Langevin approach, we model
the interaction between the two spheres and the free-field,
showing that the heterodimer has two radiative normal modes
due to a Fano interference and generating a set of quantum
Langevin equations that describe the evolution of the system.
We then vary the system’s initial Fock state and examine the
observable differences in the far-field signal. We find that states
with plasmons entangled between the heterodimer’s two modes
radiate with quantum beats, intensity fringes that oscillate with
frequency equal to the difference between the fundamental
frequencies of the two plasmon modes. This interference effect
is the plasmonic analog of the quantum beats observed in so-
called V-type atoms,26 where two excited electronic states decay
to the same ground state. However, although both the
heterodimer and V-type atom support quantum beats, we
find that, due to the bosonic nature of the LSPR, the two-
photon statistics of radiation from each system are
fundamentally different. While the V-type atom is known to
emit antibunched light,27 the plasmonic heterodimer emits
photons that arrive at the detector in bunches.
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■ FANO INTERFERENCE IN THE HETERODIMER
We begin by building a description of two silver and gold
spheres, both of radius a0, coupled to a photon-field reservoir,
as depicted in Figure 1. If we restrict our attention to the x-̂
polarized, dipole plasmon on each sphere and neglect the zero-
point energy, the Hamiltonian for this interacting plasmon-field
system is
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as derived in the Methods section. Here, the Hamiltonian is
explicitly split into a coupled oscillator contribution for the
plasmonic subsystem and an oscillator bath contribution for the
free-photon reservoir. The plasmonic subsytem is described by

the evolution of LSPR creation and annihilation operators ̂ †̂
l l,

and ̂ †̂r r, for the left and right spheres, respectively, and we
assume without loss of generality that the silver sphere is on the
left. The natural dipole plasmon frequencies for each sphere are
ωl and ωr, and the two plasmons are coupled in the rotating −
wave approximation with coupling constant U(s) = 3ℏ-
(ωLωR)

1/2a0
3/s3((ε∞

l + 2)(ε∞
r + 2))1/2, where ε∞

l,r are the infinite
frequency, static dielectric responses of silver and gold.
Meanwhile, the reservoir contribution couples each plasmon
to the free-field in the usual way,27 where fk̂λ is the operator that
annihilates a photon of wave vector k and polarization λ. The

constants ℏgkλ
l = −pl·Ekλ and ℏgkλ

r = −pr·Ekλ couple the left- and
right-localized plasmons to the photon electric field mode Ekλ =
(2πℏωk/V)

1/2εk̂
λeik·x, where εk̂

λ is a polarization vector and V is
the quantization volume.
We note also the importance of choosing experimentally

realizable parameters. For the remainder of the paper, we
assume each sphere has a radius a0 = 25 nm and is separated by
a center−center distance s = 60 nm. The optical responses of
both the silver and gold particles are described with a Drude
model using plasma frequencies ℏωp

l = 9.1 eV and ℏωp
r = 9.0

eV, nonradiative dephasing rates of ℏγl = 0.05 eV and ℏγr =
0.069 eV, and infinite-frequency dielectric constants ε∞

l = 3.77
and ε∞

r = 9.84, respectively. Finally, these geometric and
material parameter values are used in a discrete-dipole
approximation-based simulation28 to determine the spectral
positions of the dipole resonances, ℏωl = 3.6 eV and ℏωr = 2.6
eV (see Figure 2), which are red-shifted slightly from the
Clausius−Mossotti result due to relativistic effects. Given these
parameters, all constants in the Hamiltonian can be easily
calculated.

We proceed by diagonalizing the plasmonic subsystem
contribution to the total Hamiltonian. To do so, we employ
a canonical transformation with generating function

θ̂ = ̂ ̂ − ̂ ̂† †S i l r r l( ),29 where we have defined the rotational angle

Figure 1. Heterodimer system composed of silver and gold
nanospheres. We restrict our attention to each sphere’s x ̂-polarized
dipole plasmon, in aligned and antialigned configurations (the former
is depicted). A far-field detector is placed along the z-axis equidistant
from each sphere.

Figure 2. Full-wave simulation28 of the heterodimer’s extinction
coefficient and electric near-field magnitude under plane-wave
excitation. The extinction spectrum shows two peaks (labeled B and
A) corresponding to the bonding and antibonding modes. Near-field
plots of the target on resonance for each mode show that the modes
are left and right localized, a consequence of a Fano interference,
which allows both modes to radiate to the far-field. This localization
effect is due to the heterogeneity in material composition of the target.

ACS Photonics Article

DOI: 10.1021/ph500387c
ACS Photonics 2015, 2, 157−164

158

http://dx.doi.org/10.1021/ph500387c


θ
ω ω

=
ℏ − ℏ

⎡
⎣⎢

⎤
⎦⎥

U s1
2

arctan
2 ( )

l r (2)

This diagonalization procedure gives rise to two uncoupled
plasmon modes, a ̂ = l ̂ cos θ − r ̂ sin θ and b ̂ = r ̂ cos θ + l ̂ sin θ.
Expressing the Hamiltonian in this rotated basis gives
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where ℏΩa = ℏωl cos
2 θ + ℏωr sin

2 θ + 2U(s) sin θ cos θ, ℏΩb

= ℏωr cos
2 θ + ℏωl sin

2 θ − 2U(s) sin θ cos θ, gkλ
a = gkλ

l cos θ −
gkλ
r sin θ, and gkλ

b = gkλ
r cos θ + gkλ

l sin θ. Here, Ωa,b are the
renormalized frequencies for the decoupled modes, and ℏgkλ

a,b

are their renormalized coupling to the radiation field. This
rotation casts Ĥ into the normal mode coordinates of the
system, diagonalizing the plasmonic subsystem while maintain-
ing coupling to the reservoir. The two normal modes
correspond to the super- and subradiant modes predicted by
hybridization models for coupled plasmonic systems.30 To
clarify the discussion and elucidate the analogy to coupled atom
+field systems, we label the subradiant mode as a for
antibonding and the super-radiant mode as b for bonding.
Interestingly, the rotation angle, θ (eq 2), is dependent on

the ratio between the dipole coupling strength and the
difference in resonant frequencies of the uncoupled LSPRs.
For the physically realistic system under consideration the
coupling is on the order of 10−2 eV and the detuning between
the gold and silver particles is on the order of 1 eV, making the
argument of the arctangent in eq 2 much smaller than unity.
Within this parameter range, cos θ ≈ 1 and sin θ ≈ 0, making
the bonding mode effectively right localized and the
antibonding mode left localized. Furthermore, since each
mode is the sum of two dipoles (i.e., pa = pl cos θ − pr sin θ
and pb = pr cos θ + pl sin θ), the localization of a plasmon on
the left or right ensures that both modes couple to the
electromagnetic field and therefore radiate. This is in contrast
to the case of two spheres of identical size and composition:
there the bonding mode would be “bright”, while the
antibonding mode would be “dark” since the latter would
consist of two equal dipole plasmons oscillating out of phase
and therefore have negligible total dipole moment. Thus, as a
consequence of the asymmetry inherent in this mixed-material
heterodimer, both modes can be observed with a far-field
photon counter despite the electric dipole coupling, U(s),
allowing us to study far-field interference between the two
modes. This asymmetry effect is often associated with a Fano
resonance but can be expected from any coupled oscillator
system with nondegenerate natural frequencies.31 Its existence
in heterodimer systems is verified experimentally in ref 32 and
numerically in Figure 2.
As it must, the canonical transformation leaves commutation

relations invariant, and the following Heisenberg equations of
motion are readily obtained:
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These are equivalent to the quantum master equations for
the plasmonic subsystem and reservoir, since equations of
motion for all observables are derivable from these results.
Challenges arise from the last equation, which governs the
dynamics of the infinite number of degrees of freedom in the
reservoir. We handle this with the Heisenberg−Langevin
approach, formally integrating the last equation and using the
result to express the subsystem dynamics as an integral-
differential equation dependent only on initial conditions and
subsystem degrees of freedom.27 Converting to slowly varying
operators Â(t) = a ̂ exp(iΩat) and B̂(t) = b ̂ exp(iΩbt) yields
modified equations of motion
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In both equations the final term corresponds to a multiple
scattering event. Such terms will be neglected since we assume
that the spheres do not interact through the reservoir, an
assumption that is equivalent to the Markov approximation.33

The remaining integral is calculated in the Weisskopf−Wigner
approximation,27,33 and we find

γ
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Here Ca = 4Ωa
3|pa|

2/3ℏc3, Cb = 4Ωb
3|pb|

2/3ℏc3, γa = γl cos
2 θ + γr

sin2 θ, γb = γr cos
2 θ + γl sin

2 θ, and
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are known as noise operators. The equations of motion above
are so-called quantum Langevin equations, since the operators
F̂a and F̂b model stochastic forcing due to the system−reservoir
interaction. Unlike the classical case, here the stochastic forcing
is a quantum-mechanical operator that can be handled at the
level of ensemble averages. These averages depend on the initial
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state of the reservoir, which in our case is assumed to be
evacuated. Interaction with the reservoir also gives rise to
dissipation at rates Ca and Cb in accordance with the
fluctuation−dissipation theorem. Note that we also incorporate
nonradiative damping at this level by adding the aforemen-
tioned dephasing rates, γa and γb, to the radiative damping term.
We complete our description by discussing the far-field

photon counter, a quantum-mechanical instrument that can be
modeled with Glauber correlation functions.34 Of interest are
two observables in particular, the normalized intensity,

= ⟨ ̂ ̂ ⟩
⟨ ̂ ̂ ⟩

− +

− +I t
t tE E

E E
( )

( ) ( )

(0) (0) (8)

and the normalized, second-order correlation
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both assumed to be evaluated at the location of the detector, r
= dz,̂ with expectation values taken with respect to a particular
Fock state for the system. Here, Ê±(t) are the positive and
negative frequency components of the total field operator. I(t)
is a measure of the relative probability that a photon arrives at
the detector at time t, while g(2)(τ) is a measure of the relative
probability that two photons arrive separated by a delay time τ
(the first photon is assumed to arrive at t = 0). Known as the
second-order correlation, g(2)(τ) probes for the existence of
higher-order interference effects like those observed in the
HOM experiment.5 For the system under consideration, the
field operators can be written in terms of plasmonic subsystem
degrees of freedom using the equations of motion.27 We find
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where rl = −s/2x ̂ and rr = s/2x ̂. This implies that calculating the
time-dependent expectation values of all normal ordered,
number-conserving combinations of two or four subsystem
operators A and B fully specifies the expectation values in eq 8
and eq 9. This calculation may be performed by constructing
and solving equations of motion for the operators using eq 6
with knowledge of the evacuated initial state of the reservoir.

■ PLASMONIC INTERFERENCE EFFECTS AND
DISCUSSION

Single-Photon Dynamics and Quantum Beats. We turn
to modeling radiation emitted from the plasmonic heterodimer
and search for far-field signals of entanglement by comparing
the decay of two fundamentally different LSPR Fock states,

ψ

ψ

| ⟩ = | ⟩

| ⟩ =
| ⟩ + | ⟩

1 0

1 0 0 1
2

S a b

E
a b a b

(11)

where a single Fock state, |na, mb⟩, is specified by occupation
numbers n and m for the decoupled sub- and super-radiant
modes; the former is the antibonding mode, while the latter is
the bonding mode. The state |ψS⟩ is a single LSPR Fock state,

where we assume that a photon of frequency Ωa is used to
excite a plasmon in the left-localized mode. Exciting a single
plasmon state is nontrivial, but experimentalists have succeeded
in doing so in related systems by coupling to quantum emitters
that saturate (e.g., quantum dots8 or nitrogen-vacancy
centers12) or potentially with an electron beam in an electron
energy-loss spectroscopy experiment.35−37 It is interesting to
note that, although |ψS⟩ must be excited by a single photon, its
normalized intensity is indistinguishable from an LSPR excited
by classical light (i.e., a coherent LSPR state, |βa0b⟩ =

e−|β|
2/2∑n=0

∞ βn|na0b⟩/√n!, with arbitrary average occupation
number |β|2). This state, |ψS⟩, is contrasted with |ψE⟩, an
entangled LSPR Fock state generated by a single pump photon
entangled between both modes. Such a photon exhibits similar
entanglement properties to those generated via spontaneous
parametric down-conversion38 in both the optical and
plasmonic HOM experiments,1,2,5 and we show here that the
radiative decay of the plasmonic state with nontrivial quantum
coherences gives rise to an observably different far-field signal
than its nonentangled counterpart, |ψS⟩.
The transient intensity signal observed at the detector

displayed in Figure 4 is computed from the Heisenberg−

Langevin approach described in the previous section. While the
expected intensity for the single LSPR Fock state is
monotonically decreasing because the plasmon decays along a
single channel, the entangled state exhibits interference
between the possibilities for the plasmon to decay along the
super- or subradiant modes, giving rise to oscillations at the
system’s beat frequency, Ωa − Ωb. For this system in particular,
the beat frequency is approximately 1 eV/ℏ, implying that the
effect takes place well within the observed lifetime of the
plasmon (on the order of 10 fs). Thus, we expect these
interference fringes to be observable with state-of-the-art
photon counters.39

If experimentally verified, plasmonic quantum beats offer
further proof of the close connection between LSPRs and free-
field photons. As a consequence, we see that nanoparticle
aggregates with multiple, noninteracting “bright” modes, as is
the case in plasmonic Fano resonance supporting systems, have
quantum-mechanical descriptions that are equivalent to those
for optical interferometers. For the heterodimer system
discussed in this paper, the super- and subradiant modes each

Figure 3. V- and Λ-type systems are descriptions used in quantum
optics of certain electronic state configurations within atoms. In the V
system, two excited states may transition to the same ground state,
making one transition indistinguishable from the other. On the other
hand, in the Λ system, a single excited state transitions to one of two
distinguishable ground states. Classical electrodynamics predicts that
both systems will have interference effects, but quantum electro-
dynamics does not. Instead, since only the V system has
indistinguishable pathways, it is the only system that exhibits
interferences, known as quantum beats.27,33
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decay to the vacuum in direct correspondence with atomic
systems having two excited electronic states transitioning to the
same ground state. These so-called V-type atoms, in contrast to
Λ-type atoms (where an excited state can transition to two
distinct lower energy states), are known to exhibit observable
quantum beats as a result of the interference between
possibilities for energy to come from one of two indistinguish-
able transitions (see Figure 3).33 For the one-photon dynamics,
the situation is no different for the heterodimer, and these
plasmonic quantum beats therefore provide an observable
signature of an entangled LSPR Fock state in the single-
plasmon limit. Moreover, this interferometer description of
noninteracting, radiating modes is a useful way to interpret the
dynamics of more complicated nanoparticle aggregates.
Two-Photon Dynamics and Photon Bunching. The

plasmonic heterodimer and the V-type atom behave similarly
only in the one-photon case. The statistical correlation between
two photons emitted by the heterodimer sets it apart from the
atomic analog. To see this, we compare the states

ψ
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ψ

| ⟩ = | ⟩

| ⟩ = | ⟩

| ⟩ =
| ⟩ + | ⟩

2 0

1 1

2 0 0 2
2

S a b

S a b

E
a b a b

1

2

(12)

Here, the first two states result from pumping with non-
entangled light, while the last state is assumed to be excited by
entangled photons just as in the previous section. The LSPR
Fock state |ψS1⟩ models a typical pumping of just the left-
localized mode, while |ψS2⟩ models an excitation where both the
super- and subradiant modes are pumped with one photon
individually.
Normalized, second-order correlations, g(2)(τ), for each

LSPR Fock state are plotted in Figure 5. These are calculated
with the Heisenberg−Langevin approach described previously
under the assumption that the emitted field is time-translation
invariant. Interestingly, we see a higher probability for short
delay times in all three cases, indicating varying degrees of
photon bunching for all three LSPR Fock states. This

interference effect is a direct result of the bosonic nature of
the plasmon−photon system. More explicitly, photon detection
at t = 0 and at t = τ occurs in six different ways: (1) two
photons can be emitted due to decay along mode A at t = −|r −
rl|/c and t = τ − |r − rl|/c, (2) two photons can be emitted due
to decay along mode B at t = −|r − rr|/c and t = τ − |r − rr|/c,
(3) mode A can decay at t = −|r − rl|/c and mode B at t = τ − |r
− rr|/c, and (4−6) all three previous possibilities can happen in
reverse order. These channels are depicted in Figure 6. Since

Figure 4. We compare the dynamics of the expected intensity signal
from a single LSPR Fock state, |ψS⟩, and a superposition LSPR state,
|ψE⟩, excited by an entangled photon. In the former case, the signal
decreases monotonically over time, while, in the latter case, the signal
exhibits oscillations at the beat frequency of the heterodimer system.
This is due to the fact that |ψS⟩ decays only through the antibonding
mode, while |ψE⟩ may decay through both bonding and antibonding
modes, leading to an interference in the intensity signal. These
interference-induced oscillations, known as quantum beats, serve as an
observable, far-field signature of an entangled LSPR Fock state in the
single-plasmon limit. Note that, in both cases, the signal starts at a
nonzero time due to the travel time of photons from the heterodimer
to the detector.

Figure 5. We compare the normalized, second-order photon
correlation expected from three different LSPR Fock states. |ψS1⟩
corresponds to a two-photon pumping of just the left-localized mode,
|ψS2⟩ corresponds to exciting each mode individually, and |ψE⟩ is an
excited state where two plasmons are entangled between the left- and
right-localized modes. All three states exhibit varying degrees of
photon bunching, but the degree of correlation varies from state to
state.

Figure 6. Photon detection in the far-field at time t = 0 and t = τ can
occur in six different ways for the heterodimer considered in this
paper. On the left-hand side, the possibilities that two photons come
from A, two photons come from B, and one photon comes from each
are depicted (note that the Roman numerals serve to distinguish what
otherwise should be indistinguishable photons). Meanwhile, on the
right-hand side, the two photons on the left are exchanged, allowing
for three more possibilities. The channels on the right interfere
constructively with the channels on the left due to the bosonic nature
of the plasmon−photon system.
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the system’s wave function is symmetric under boson exchange,
each possibility will interfere constructively with its reverse
process for delay times within the lifetime of the plasmon, and
thus all three states exhibit some degree of bunching. However,
only |ψE⟩ has access to interference from all six possibilities,
accounting for the anomalously high degree of correlation
exhibited by the entangled state. Meanwhile, oscillations in two
of the signals arise from the phase difference between photons
emitted from the left- and right-localized modes, explaining
why the signal from the entirely left-localized LSPR Fock state
is free of oscillations. This reasoning was first presented for a
more general system by Fano, and mathematical details can be
found in his paper.40

Photon bunching in LSPR systems allows us to draw
comparisons to the plasmonic HOM experiment, which
measures coincidence counts, the all-time integral of the
second-order correlation.5 In that case, the emitted photons
exhibit bunching at one detector or another for short delay
times as a result of purely quantum-mechanical interference
between two propagating plasmons.1,2 Although we expect
photons emitted from LSPR systems to be bunched as well, the
effect takes place for fundamentally different physical reasons.
For our purposes, we see clearly from Figure 5 that an
anomalously high degree of bunching is another far-field
signature of an entangled LSPR Fock state. Moreover, the
reasoning above is one that can be applied in general to systems
of interacting bosons, which, interestingly, indicates that
radiation from more complicated nanoparticle aggregates
should always be bunched, regardless of the details of the
LSPR Fock state decaying to the far-field.
This result breaks the analogy between the plasmonic

heterodimer and V-type atoms. In the atomic system, the
radiating dipole is created by an oscillating electron, a system
that must exhibit Fermion statistics. In fact, radiation from V-
type atoms is known to be antibunched; that is, two photons
have a low probability of arriving with a short delay time τ.27

Physically, this occurs because the electron must relax to a
ground state when it emits and then must be excited again
before emitting a second photon, in contrast to the plasmon,
which can be pumped with multiple photons at once. This,
fundamentally, is the difference between a Fermionic and
bosonic oscillator, and it is this difference that gives rise to
differences in two-photon interferences from each of the two
systems.

■ CONCLUSION
Using a Heisenberg−Langevin approach we have modeled the
quantum-mechanical properties of the optical-frequency
electromagnetic radiation emitted from the hybridized localized
surface plasmons of a mixed-metal heterodimer. A canonical
transformation was used to diagonalize the plasmonic
contributions to the Hamiltonian, showing simply that the
heterodimer system supports sub- and super-radiant normal
modes that remain coupled to the free-field. We have predicted
that plasmon entanglement across these heterodimer modes is
observable in the far-field, despite the inherent radiative and
nonradiative damping associated with LSPRs. Because the
entangled LSPR Fock state can decay along two indistinguish-
able pathways, its emitted radiation exhibits interferences at the
system’s beat frequency, so-called quantum beats. This effect
parallels the quantum beats observed in the radiation emitted
from certain electronic transitions in V-type atoms (see Figure
3), a parallel that offers a qualitative way to interpret the single-

photon dynamics of more complicated nanoparticle aggregates.
We show further that the analogy between plasmon−photon
and atom−photon interaction only goes so far. In fact, emitted
photons from the heterodimer are positively correlated and can
be expected to arrive at the detector in bunches. On the other
hand, the opposite has been observed for V-type atoms.27 The
difference in photon correlation can be attributed to the
difference in quantum statistics of the two emitters. This
breakdown of the analogy between plasmonic and atomic
systems is true in general and applies to interpretations of the
physics of more complicated LSPR-supporting nanoparticle
aggregates.

■ METHODS
Derivation of the Quantum Plasmon Hamiltonian.

The oscillator Hamiltonian in eq 1 can be derived by first
approximating the electric polarization induced in each sphere
as an LSPR oscillator with dipole moment p. This approach was
developed first by Lucas and co-workers41 for the case of
classical coupled LSPRs, while the quantization of a single
nanosphere’s plasmon modes was first developed by Ritchie
and co-workers.42,43 These approaches are applied in detail in a
variety of references; see, for example, refs 19 and 44. Here, we
begin with the result

ω ω= + + + +H
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m

m Vu u
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2 2
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2
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2 2
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where ul,r = pl,r/(−e) are generalized coordinates with conjugate
momenta l r, , ωl,r are the dipole plasmon frequencies for the
left and right spheres, and ml,r = e2/αl,rωl,r

2 are the oscillator
masses defined in terms of the surface plasmon polarizabilities
for each sphere, αl,r = 3a0

3/(ε∞
l,r + 2) in the Drude approximation

to the metal’s dielectric response.
The mutual electric dipole−dipole interaction, Vint = −pl·Λ0·

pr, takes the form

= · ̂ ̂ − ·V
e
s

u n n u[3 1]l lr lr rint

2
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where n̂lr is the unit vector between the left and right dipole,
and we restrict ourselves to the near-field component Λ0 of the
dipole relay tensor. Finally, further restricting ourselves to x-
polarized dipoles, quantizing the harmonic oscillators in the
standard way, and making the rotating wave approximation, we
have

ω ω̂ = ℏ ̂ ̂ + ℏ ̂ ̂ + ̂ ̂ + ̂ ̂† † † †H l l r r U s l r r l( )[ ]l rsys (15)

Here, l(̂l†̂) and r(̂r†̂) are the annihilation (creation) operators
for plasmons on the left and right sphere, respectively, defined
in terms of the original coordinates as
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with the dagger operators obtained by Hermitian conjugate.
Meanwhile, the interaction energy between the dipoles reduces
to U(s) = 3ℏ(ωLωR)

1/2a0
3/s3((ε∞

l + 2)(ε∞
r + 2))1/2.

We complete the derivation of the Hamiltonian by including
the energetic contribution of the free-photon field. This is done
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in the standard way, where modes of the electric field with
polarization λ and wave vector k and Ekλ are treated as an
infinite set of uncoupled, quantum oscillators and each plasmon
dipole couples to each electric field mode with interaction
energy ℏgkλ

l,r = −pl,r·Ekλ.
27,33 The combination of system and

reservoir degrees of freedom yields the Hamiltonian Ĥ used in
this paper.
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Quantum plasmonics. Nat. Phys. 2013, 9, 329−340.
(14) del Pino, J.; Feist, J.; Garca-Vidal, F.; Garca-Ripoll, J. J.
Entanglement detection in coupled particle plasmons. Phys. Rev. Lett.
2014, 112, 216805.
(15) Lee, C.; Tame, M.; Lim, J.; Lee, J. Quantum plasmonics with a
metal nanoparticle array. Phys. Rev. A 2012, 85, 063823.
(16) Frank, R. Coherent control of Floquet-mode dressed plasmon
polaritons. Phys. Rev. B 2012, 85, 195463.
(17) Lawrie, B.; Evans, P.; Pooser, R. Extraordinary optical
transmission of multimode quantum correlations via localized surface
plasmons. Phys. Rev. Lett. 2013, 110, 156802.
(18) Lee, C.; Tame, M.; Noh, C.; Lim, J.; Maier, S. A.; Lee, J.;
Angelakis, D. G. Robust-to-loss entanglement generation using a
quantum plasmonic nanoparticle array. New J. Phys. 2013, 15, 083017.
(19) Cherqui, C.; Bigelow, N. W.; Vaschillo, A.; Goldwyn, H.;
Masiello, D. J. Combined tight-binding and numerical electrodynamics
understanding of the STEM/EELS magneto-optical responses of
aromatic plasmon-supporting metal oligomers. ACS Photonics 2014, 1,
1013−1024.
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